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Abstract. In a recent paper, Caps et al. [1] described parabolic flight experiments showing the movement
of liquid into the foam during the microgravity phase. In this comment, we present a detailed theory of
this process, supported by numerical calculations, confirming their conclusion that the wetting front moves
with the square root of time. We further show that this diffusion process is similar for different surfactant
systems, which allows us to provide bounds on the value of the diffusion coefficient.

PACS. 82.70.Rr Aerosols and foams — 83.80.Iz Emulsions and foams

The properties of aqueous foams are particularly well un-
derstood, at least in the limit of low liquid fraction [2].
Much of this understanding is due to the development
of drainage equations, which describe the motion of liquid
through a foam under various conditions [3-5]. In the case
of microgravity, analytic solutions for the diffusive spread-
ing of a pulse of liquid have been given [6] and solutions
for various other experimental situations of interest also
exist [7].

Caps et al. [1] performed experiments on aqueous
foams during the microgravity phase of a parabolic flight,
similar to those first described by Noever and Cronise [8].
Their results show that liquid moves rapidly upwards into
the foam when the acceleration due to gravity is reduced,
in broad agreement with their analysis of a drainage
equation. This “capillary wetting” is a well-known phe-
nomenon, even under terrestrial conditions [6], but it is
more pronounced, and more amenable to analysis, when
viewed in microgravity conditions.

We will expand upon the details of the theoretical ap-
proach to analyzing such capillary-rise experiments us-
ing drainage equations. The effects of surface rheology on
the drainage process are poorly understood, leading us
to consider two limiting cases which provide bounds on
the rapidity with which liquid moves into the foam. We
complement the analysis of Caps et al. [1] by providing
detailed scaling laws for the position of the wetting front
that invades a dry foam, without recourse to free fitting
parameters.

The standard drainage models are straightforwardly
adapted to the microgravity case. They are expressed in
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nonlinear diffusion equations which describe the spread-
ing of liquid through the network of narrow channels, or
Plateau borders (PBs) that make up the bulk of the foam’s
liquid [7]. We shall consider two one-dimensional diffusion
equations, representing PB interfaces that are rigid or mo-
bile [9, 10] due to the surface chemistry of the surfactant
solution used to produce the foam. The former equation
is based upon Poiseuille flow through the PBs, while the
latter assumes plug flow in the PBs, with viscous dissi-
pation occurring in the vertices where they meet. These
are recognised as two limiting cases, with real foams often
lying close to one or other of the limits. However, the de-
tails of the interpolation between these limits remains to
be fully understood.

Our measure of liquid content is the cross-sectional
area A of a PB, directly analogous to the channel-width
parameter | used in [1]: | = (8A4/(4 — m))'/2,

An important change to the familiar drainage equa-
tions is entailed by the change in geometry — the exper-
iments were two-dimensional (i.e. a single layer of bub-
bles), so the liquid-transporting PBs are pressed against
the walls of the Hele-Shaw cell; we shall refer to them as
surface PBs.

The diffusion equations express the variation of PB
area A with position  and time t. We denote the liquid
surface tension by o and its viscosity by 7, using the values
given in [1]: 0 = 3.0x 1072 N/m and n = 1 x 102 Ns/m?.
The Hele-Shaw cell is 2 mm thick and for our purposes it
is sufficient to take parameter values for a monodisperse,
hexagonal bubble structure: the length of each surface PB,
L = 1 mm, is taken as the relevant length-scale. The liquid
fraction @, is then approximately 1.354/L>.



120

The European Physical Journal B

Liquid fraction

t=1s
t=10s
t=20s
t = 30s
t =40s
t =50s
t = 60s

0.1 0.15

Position (m)

0.2

Liquid fraction

t=1s
t=10s
t=20s
t = 30s
t =40s
t = 50s

P 1

t =60s

0.05

0.1 0.15 0.2

Position (m)

Fig. 1. The zero-gravity wetting from one end, with cy = 35%, of a one-dimensional dry foam. a) Numerically obtained profiles
for a foam with rigid interfaces are shown at various times ¢. b) For the case of mobile interfaces, profiles are obtained from (5).
The volume of liquid in the foam increases with the square root of time in both cases, but the constant of proportionality is

lower in the mobile-interface case.

The time-scale is given by
nL
oo K

where the geometrical constant is § = (3(4 — m))¥/? ~
0.655 while the permeability constant K depends upon the
model. In the rigid-interface case our calculations [11] sug-
gest that K varies little between the bulk and the surface
Plateau borders. We replace the factor of %, due to aver-
aging the possible orientations of a PB, with a factor of %,
since we are now averaging in two dimensions, and use the
value K. = 9.9 x 10~3. The value of K in the mobile inter-
face case is obtained empirically [10, 12] for bulk vertices
(agreeing with a naive order-of-magnitude estimate based
upon flow through a packed bed of spheres [10]), and in
the absence of experiments on the dissipation in surface
vertices, we must here assume that it also does not vary
greatly and use K,, = 2.3 x 1073 for these large bubbles.
The relevant time-scales are then T, = 5.14 x 1073 s and
T, =2.21 x 1072 s.

In each case we reduce the equations to dimensionless
form, using o = A/L?, € = /L and 7 = t/T, to give

g_i‘ — ({% (@ g—(g) INTERFACES (1)
and
9a _ 0 (10a) MOBILE 2)
or 0¢ \ 2 0¢

which is the diffusion equation.

The experiment of interest is that of a dry foam which
is wetted at one end. The capillary forces will cause liquid
to move into the foam. We set a(§ = 0,7) = «p, where
the parameter ag represents the critical liquid fraction
of 35% at which the foam becomes a bubbly liquid. The
appropriate solutions of (1) and (2) are shown in Figure 1
and explained in the following sections. In each case we
extract a diffusion coefficient and compare it with the one
measured by [1] in their experiments: Dy, = 1.19 cm?s™1,

Rigid interfaces

The most straightforward way to solve (1) is to look for
a similarity solution, as Koehler et al. [6] did for the case
where gravity is included. This is necessarily of the form

£

5= —0

F1/2°

Oé(f,T) = y(s), (3)

This shows that the wetting front moves in the positive
&-direction with a rate proportional to the square root of
time. The similarity function y satisfies

sy + 2 (y3/2)" — 0. (@)
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The amount of liquid in the foam also increases with /7.
The diffusion coefficient is

L2
T T.

LK. 6
—_ ~1.94 cm?s7!.

D

This is larger than the experimental value, and provides
an upper bound. A numerical solution of (4) for the liquid
fraction, in dimensional variables, is shown in Figure 1,
scaled according to (3).

Mobile interfaces

This is the case considered by Caps et al. [1]; here we
give the analytic solutions for the liquid fraction and edge-
length, and include the parameters appropriate for the
two-dimensionl geometry.

The appropriate scaling is again given by (3) and the
solution of (2) is an error function:

%)
alf,7T) =agerfc | — | . 5
(€r) = aperte (= 5)
This is shown in Figure 1; comparison with the case of
rigid interfaces suggests that liquid moves more slowly into
the dry foam here, although the foam is made slightly wet
throughout immediately. The diffusion coefficient is

L2
T T

ocLK,5

D = ~ 0.452 cm?s71,
n

which is a lower bound for the diffusivity of the wetting
process. It should be compared with the theoretical value
determined by Caps et al. [1], D ~ 0.72 cm®s~!, which
neglects the actual two-dimensional geometry of the foam
sample.

The volume of liquid in the foam also increases in pro-
portion to the square root of time. Moreover, the solution
shows that at a given position in the foam, the edge-
width [ increases as

| ~ erfc!/? (t71/2>

which is rather more complicated than the ansatz adopted
in equation (1) of Caps et al. [1].

Summary

For both of the equations studied, the liquid advances into
the dry foam with the square root of time, showing generic
diffusion behaviour. In neither case is there a sharp wet-
ting front; identification of such a front in an experiment
is therefore rather arbitrary and it would be better to fit
a measured profile, wherever possible.

121

The diffusion coefficient measured in the experiments,
D, = 1.19 cm?s™!, lies midway between the values calcu-
lated here. Our upper bound, D = 1.94 cm?s~! is a factor
of four greater than the lower bound D = 0.452 cm?s~".
It is not clear to which limit, if either, the surfactant so-
lution used in the experiments should belong.

Microgravity experiments on foams present many new
opportunities for studying the behaviour of these ubiqui-
tous and remarkably useful materials. In the next genera-
tion of such experiments, it is to be hoped that a greater
control over factors such as bubble size (the ability to ob-
tain monodisperse foams for example) and the influence
of vibration will be possible. As we have shown, there is
already a close correspondence between theory and ex-
periment, but it is to be hoped that carefully performed
experiments will lead to further advances in theory. More-
over, a good choice of experiment, such as the constant
addition of liquid to a dry foam at a point, should allow
for the identification of the correct theoretical model to
apply, as determined by the surface chemistry of the sur-
factant solution.
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